On a conjecture on total domination in claw-free cubic graphs: proof and new upper bound
نویسنده
چکیده
In 2008, Favaron and Henning proved that if G is a connected claw-free cubic graph of order n ≥ 10, then the total domination number γt(G) of G is at most 5 11 n, and they conjectured that in fact γt(G) is at most 4 9 n (see [O. Favaron and M.A. Henning, Discrete Math. 308 (2008), 3491–3507] and [M.A. Henning, Discrete Math. 309 (2009), 32–63]). In this paper, in a first step, we prove this conjecture and show that the bound is reached for exactly two graphs of order 18. In a second step, we prove that if G is a connected claw-free cubic graph of order n ≥ 20, then γt(G) ≤ 10 23n, and we show that this second bound is not reached. Henning and Southey (see [Discrete Math. 310 (2010), 2984–2999] also proved the initial conjecture, but in a less natural way. Moreover, they gave two graphs for which the bound is reached without proving that there are no others. An open problem is proposed in the last section.
منابع مشابه
Bounds on total domination in claw-free cubic graphs
A set S of vertices in a graphG is a total dominating set, denoted by TDS, ofG if every vertex ofG is adjacent to some vertex in S (other than itself). The minimum cardinality of a TDS ofG is the total domination number ofG, denoted by t(G). IfG does not contain K1,3 as an induced subgraph, then G is said to be claw-free. It is shown in [D. Archdeacon, J. Ellis-Monaghan, D. Fischer, D. Froncek,...
متن کاملVizing's conjecture: a survey and recent results
Vizing’s conjecture from 1968 asserts that the domination number of the Cartesian product of two graphs is at least as large as the product of their domination numbers. In this paper we survey the approaches to this central conjecture from domination theory and give some new results along the way. For instance, several new properties of a minimal counterexample to the conjecture are obtained an...
متن کاملOn trees attaining an upper bound on the total domination number
A total dominating set of a graph $G$ is a set $D$ of vertices of $G$ such that every vertex of $G$ has a neighbor in $D$. The total domination number of a graph $G$, denoted by $gamma_t(G)$, is~the minimum cardinality of a total dominating set of $G$. Chellali and Haynes [Total and paired-domination numbers of a tree, AKCE International ournal of Graphs and Combinatorics 1 (2004), 6...
متن کاملOn the domination polynomials of non P4-free graphs
A graph $G$ is called $P_4$-free, if $G$ does not contain an induced subgraph $P_4$. The domination polynomial of a graph $G$ of order $n$ is the polynomial $D(G,x)=sum_{i=1}^{n} d(G,i) x^{i}$, where $d(G,i)$ is the number of dominating sets of $G$ of size $i$. Every root of $D(G,x)$ is called a domination root of $G$. In this paper we state and prove formula for the domination polynomial of no...
متن کاملA conjecture on k - factor - critical and 3 - γ - critical 1 graphs ∗
4 For a graph G = (V,E), a set S ⊆ V is a dominating set if every vertex in 5 V is either in S or is adjacent to a vertex in S. The domination number γ(G) 6 of G is the minimum order of a dominating set in G. A graph G is said to be 7 domination vertex critical, if γ(G− v) < γ(G) for any vertex v in G. A graph 8 G is domination edge critical, if γ(G∪ e) < γ(G) for any edge e / ∈ E(G). We 9 call...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Australasian J. Combinatorics
دوره 51 شماره
صفحات -
تاریخ انتشار 2011